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THERMOCAPILLARY CONVECTION IN A HORIZONTAL LAYER OF LIQUID 
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An exac t  solution is found for the equat ions for free convec t ion  in  a 
p lanar  hor izonta l  layer  of l iquid  with a constant t empera ture  gradient  

at  the boundaries.  Two cases of boundary conditions for the ve loc i ty  

are considered: 1) the liquid is bounded by two solid planes, 2) the 
upper surface of the liquid is free, and the surface tension is a func- 
tion of temperature. 

1. Motion of the p re sen t  type occurs ,  for  example,  
in the middle  of a l a rge  r e c t a n g u l a r  cel l  with a fiat  
base .  If one ve r t i c a l  side is hot and the opposite one 
is cold, the l iquid cannot  be in equ i l ib r ium,  and mo-  
t ion occurs  no m a t t e r  how sma l l  the t e m p e r a t u r e  
di f ference may be. Two m e c h a n i s m s  give r i s e  to 
convection.  F i r s t ,  the densi ty  of the l iquid at the hot 
wall  is l e s s  than that at the cold one (if t he rma l  ex- 
pans ion  is normal ) .  Second, the sur face  t ens ion  is a 
funct ion of t e m p e r a t u r e ,  so cap i l l a ry  fo rces  cause  
the l iquid to move along the sur face  to the cold wall ,  
with a compensa t ing  flow in the r e v e r s e  d i rec t ion  at 
the bottom. The th ickness  of the l aye r  d e t e r m i n e s  
which of these  is the p r inc ipa l  mechan i sm.  Levich 
[1] has p rev ious ly  d i s cus sed  pure ly  cap i l l a ry  convec-  
tion. 

The t e m p e r a t u r e  grad ien t  at the bounda r i e s  may 
be cons ide red  as constant ,  at l eas t  as an average  
over  the length, while the mot ion may be taken as 
pa r a l l e l  to the base .  This  al lows us to cons ide r  the 
convect ion  in an inf in i te  p l a n e - p a r a l l e l  hor izonta l  
l aye r  with a cons tan t  hor izon ta l  t e m p e r a t u r e  grad ien t  
at the boundar i e s .  

Let the th ickness  of the l aye r  of l iquid  be d = 2h. 
The x axis is  taken as ve r t i ca l ,  while the z axis runs  
f rom the hot wall  to the cold one, the or ig in  lying at 
the c e n t e r  of the l iquid.  The mot ion  is independent  
of the y coordina te ,  which l ies  p e r p e n d i c u l a r  to the 
xz plane.  

The boundary  condi t ions  for  the t e m p e r a t u r e  may 
be put in the following form:  

T = - -  A z  for  x ~--- ~ h. (1.1) 

Here the t e m p e r a t u r e  T is r eckoned  r e l a t ive  to 
the mean  value ,  while A is  the hor izon ta l  t e m p e r a -  
tu re  g rad ien t  at the bounda r i e s  of the liquid. 

The speed of the s t e a d y - s t a t e  mot ion  is  sought in 
the form 

vx = O, v v = O, vz = v (x) .  (1.2) 

F r o m  (1.2) the equat ions  of f r ee  convect ion  be -  
come 

i Op t Op 02v (1.3) 
p Ox - - g ~ T ,  p Oz - -v75x~  

OT / 02T 02T 
v -&z = % ~-b~Yx 'a + - 5 ~ / "  (1.4) 

Here  p is  p r e s s u r e ,  p is the m e a n  dens i ty  of the 

liquid, g is the k inemat ic  v iscos i ty ,  fl is the coef-  
f ic ient  of t he r ma l  expansion,  ~( is the t he rma l  dif- 
fusivi ty,  and g is the acce le ra t ion  due to gravi ty.  

Liquid d,cm 

Water H20 
Glycerol Call5 (OH)a 
Methanol CHaOH 
Butanol C4H~)t{ 
D/ethyl ether CzHaOCzH~ 
Mercury Hg 

2.72 
t .02 
l.O~ 
I . i 3  
t .12  
t .06 

The equation of continuity is complied with iden- 

tically. The condition for the flow to be closed is 

h 

Iv (x)dx = 0. (1.5) 

We eliminate the pressure from (1.3) to get 

0% g~ OT 
0~ --~ = --4-~ " (1.6) 

The left side is dependent only on x, which means 

that the temperature is a linear function of z. To 

find 0T/0z we differentiate (1.4) with respect to z 

and integrate twice with respect to x, obtaining 

OT v (clx + c~). (1.7) o-7=7~ 

Subst i tut ion of (1.7) into (1.6) and in tegra t ion  with 
r e spec t  to x gives 

x s x~ 
v = el -~. + cz-~. + ca y + c4x + cs . (1.8) 

In tegra t ion  of (1.7) with r e spec t  to z gives  the 
t e m p e r a t u r e  distribution as 

u 
T = . -~  (clx -q- e2) z q-  f (x ) ,  (1.9) 

where  f(x) mus t  be found f rom (1.4), 

'd2f aT ( 1 . 1 0 )  

with a known r ight  side. All the cons tan t s  e i of (1.8) 
and (1.9) mus t  be found f rom (1.5) and the boundary  
condi t ions .  

F r o m  (1.1) and (1.9) we get 

c 1 = O, c 2 = - - A g ~ / v ;  f ( ~ h )  = 0 .  (1.11) 

The condi t ion of (1.1) causes  the e x p r e s s i o n  for  
aT/Oz of (1.7) to become an even funct ion of x. This  
p r ob l e m may a l so  be solved for  the case  where  the 
hor izon ta l  t e m p e r a t u r e  g rad ien t s  at the bounda r i e s  
a re  different .  

2. Cons ide r  the f ree  convect ion  when the bounda-  
r i e s  a r e  fo rmed  by sol ids.  The condi t ion for adhesion 
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of the liquid to the boundar ies  gives 

v = O  for z = •  (2.1) 

Condit ions (1.5), (1.11), and (2.1) uniquely de te r -  
mine  all the cons tants  of in tegrat ion.  Simple opera-  
t ions give us the veloci ty and t e m p e r a t u r e  as 

v G Ag~h 4 " (~ ~. x '  
, ~ )  7 , ) ,  

(2.2) 
T -- Ah [ ~  (3~5--10~a + 7r - -  ~-j ( P - - ~ ) "  

Here G is the Grasshof  n u m b e r  and P the Prandt l  
number .  

z u 

Fig. 1 

Consider the heat flux in this l aye r  of liquid. The 
flux Q per unit length along the y axis consists of two 
parts: the flux due to the thermal conductivity and 
the convective flux: 

h h 

Q = - -  • : t  dx + pc. vT dx = 2• [I + (GP),4725 J ] (2.3) 

in which ~ and Cp are  the t he rma l  conducti.vity and 
specif ic  heat,  r espec t ive ly .  

There  is  a lso a ve r t i ca l  flux due to the motion,  
which may be deduced f rom the t e m p e r a t u r e  grad ien t  
at the boundary.  The flux through unit  a r ea  of s u r -  
face a t x = h i s  

01 = -- )4 00- ~ x=h =--~'uAGP (2.4) 

The same flux passes through unit area at x = -h. 
An interesting point is that the velocity profile of 

(2.2) coincides with that for steady-state convection 

between vertical plates heated to different tempera- 

tures [2]. 
3. Consider the motion when the upper surface is 

free. The sum of the forces on unit area must here 

be zero. The frictional force, which is defined by 

the tensor for the viscous stresses, is accompanied 

by capillary forces due to the change in the surface 

tension. The condition for equilibrium may [i] be 

wri t t en  as 

(Or)  O~OT pv ~z ~=h = -~- ~ ' (3. i) 

in which c is  the su r face  t ens ion ,  which is  taken to be 
a l i n e a r  funct ion of t e m p e r a t u r e .  

As before ,  the ve loc i ty  van i shes  at the lower  bound- 

ary,  

7, = 0 for x = - -  h .  (3.2) 

We use  (3.1) and (3.2) with (1.5) to get from (1.8) and 

1.9) that 

7 = ( -  + + - l)  + + t ) ]  

r GP 4~5 

G a P  . 4 
+ ( -  - + + 3) - 

(Go 3Ah'- ( ~_~__~ (3.3) 
= pv~ \ aT ]1" 

Here the d imens ion le s s  p a r a m e t e r  G a c h a r a c t e r ,  
izes  the motion due to the cap i l l a ry  action. The ra t io  

G~ 3 (3.4) 

indica tes  whether  the densi ty  change or the cap i l l a ry  
force dominates  the convection. The f i r s t  t e r m s  in 
(3.3) may be neglected if Ga/G >> 1, which c o r r e -  
sponds to purely  cap i l l a ry  convection;  the veloci ty  
prof i le  is then shown by curve  (a) of Fig. 1. The 
f i r s t  t e r m s  in (3.3) p redomina te  if Ga/G << 1, which 
co r re sponds  to pure ly  the rmal  convect ion,  whose 
veloci ty profi le  is indicated by curve  (b) of Fig. 1. 

F igure  2 shows the veloci ty  prof i le  when the two 
m e c h a n i s m s  cont r ibute  equally. Curve (a) c o r r e -  
sponds to n o r m a l  t he rma l  expansion,  with Ga = G; 
curve  (t)) co r r e sponds  to anomalous  expansion (fl < 
< 0) and G a = - G .  Here the veloci ty prof i le  and the 
t e m p e r a t u r e  d i s t r ibu t ion  coincide with (2.2). 

Relat ion (3.4) depends only on the p a r a m e t e r  d = 
= 2h for  any given liquid. The c h a r a c t e r i s t i c  th ick-  
ness  d,  (that for  which Ga/G = 1) is given by 

12 __.~_~ ~'/, (3 .5)  
d,  = ( - -  pg~ OT ] " 

The table gives the d .  ca lcu la ted  for  some l iquids  
for  a mean  t e m p e r a t u r e  of 25 ~ C, the p a r a m e t e r s  
being taken main ly  f rom [3]. 

The convect ion is  pure ly  t h e r m a l  for d >> d . ,  while 
it  is  l a rge ly  cap i l l a ry  for  d << d, .  
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Fig. 2 
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